Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 201 - 225 of 1700 results
201.

Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions.

blue CRY2clust HeLa Transgene expression Endogenous gene expression
Sci Adv, 31 Mar 2023 DOI: 10.1126/sciadv.adg1123 Link to full text
Abstract: Biomolecular condensates participate in the regulation of gene transcription, yet the relationship between nuclear condensation and transcriptional activation remains elusive. Here, we devised a biotinylated CRISPR-dCas9-based optogenetic method, light-activated macromolecular phase separation (LAMPS), to enable inducible formation, affinity purification, and multiomic dissection of nuclear condensates at the targeted genomic loci. LAMPS-induced condensation at enhancers and promoters activates endogenous gene transcription by chromatin reconfiguration, causing increased chromatin accessibility and de novo formation of long-range chromosomal loops. Proteomic profiling of light-induced condensates by dCas9-mediated affinity purification uncovers multivalent interaction-dependent remodeling of macromolecular composition, resulting in the selective enrichment of transcriptional coactivators and chromatin structure proteins. Our findings support a model whereby the formation of nuclear condensates at native genomic loci reconfigures chromatin architecture and multiprotein assemblies to modulate gene transcription. Hence, LAMPS facilitates mechanistic interrogation of the relationship between nuclear condensation, genome structure, and gene transcription in living cells.
202.

Allosteric inactivation of an engineered optogenetic GTPase.

blue AsLOV2 in vitro
Proc Natl Acad Sci U S A, 27 Mar 2023 DOI: 10.1073/pnas.2219254120 Link to full text
Abstract: Optogenetics is a technique for establishing direct spatiotemporal control over molecular function within living cells using light. Light application induces conformational changes within targeted proteins that produce changes in function. One of the applications of optogenetic tools is an allosteric control of proteins via light-sensing domain (LOV2), which allows direct and robust control of protein function. Computational studies supported by cellular imaging demonstrated that application of light allosterically inhibited signaling proteins Vav2, ITSN, and Rac1, but the structural and dynamic basis of such control has yet to be elucidated by experiment. Here, using NMR spectroscopy, we discover principles of action of allosteric control of cell division control protein 42 (CDC42), a small GTPase involved in cell signaling. Both LOV2 and Cdc42 employ flexibility in their function to switch between "dark"/"lit" or active/inactive states, respectively. By conjoining Cdc42 and phototropin1 LOV2 domains into the bi-switchable fusion Cdc42Lov, application of light-or alternatively, mutation in LOV2 to mimic light absorption-allosterically inhibits Cdc42 downstream signaling. The flow and patterning of allosteric transduction in this flexible system are well suited to observation by NMR. Close monitoring of the structural and dynamic properties of dark versus "lit" states of Cdc42Lov revealed lit-induced allosteric perturbations that extend to Cdc42's downstream effector binding site. Chemical shift perturbations for lit mimic, I539E, have distinct regions of sensitivity, and both the domains are coupled together, leading to bidirectional interdomain signaling. Insights gained from this optoallosteric design will increase our ability to control response sensitivity in future designs.
203.

Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells.

blue CRY2/CRY2 hESCs human IPSCs mouse in vivo Immediate control of second messengers
Mol Ther, 16 Mar 2023 DOI: 10.1016/j.ymthe.2023.03.013 Link to full text
Abstract: Optogenetic techniques permit non-invasive, spatiotemporal, and reversible modulation of cellular activities. Here, we report a novel optogenetic regulatory system for insulin secretion in human pluripotent stem cell (hPSC)-derived pancreatic islet-like organoids using monSTIM1 (monster-opto-Stromal interaction molecule 1), an ultra-light-sensitive OptoSTIM1 variant. The monSTIM1 transgene was incorporated at the AAVS1 locus in human embryonic stem cells (hESCs) by CRISPR-Cas9-mediated genome editing. Not only were we able to elicit light-induced intracellular Ca2+ concentration ([Ca2+]i) transients from the resulting homozygous monSTIM1+/+-hESCs, but we also successfully differentiated them into pancreatic islet-like organoids (PIOs). Upon light stimulation, the β-cells in these monSTIM1+/+-PIOs displayed reversible and reproducible [Ca2+]i transient dynamics. Furthermore, in response to photoexcitation, they secreted human insulin. Light-responsive insulin secretion was similarly observed in monSTIM1+/+-PIOs produced from neonatal diabetes (ND) patient-derived induced pluripotent stem cells (iPSCs). Under LED illumination, monSTIM1+/+-PIO-transplanted diabetic mice produced human c-peptide. Collectively, we developed a cellular model for the optogenetic control of insulin secretion using hPSCs, with the potential to be applied to the amelioration of hyperglycemic disorders.
204.

Development and Application of an Optogenetic Manipulation System to Suppress Actomyosin Activity in Ciona Epidermis.

blue BcLOV4 Ciona in vivo HeLa Control of cytoskeleton / cell motility / cell shape
Int J Mol Sci, 16 Mar 2023 DOI: 10.3390/ijms24065707 Link to full text
Abstract: Studying the generation of biomechanical force and how this force drives cell and tissue morphogenesis is challenging for understanding the mechanical mechanisms underlying embryogenesis. Actomyosin has been demonstrated to be the main source of intracellular force generation that drives membrane and cell contractility, thus playing a vital role in multi-organ formation in ascidian Ciona embryogenesis. However, manipulation of actomyosin at the subcellular level is impossible in Ciona because of the lack of technical tools and approaches. In this study, we designed and developed a myosin light chain phosphatase fused with a light-oxygen-voltage flavoprotein from Botrytis cinerea (MLCP-BcLOV4) as an optogenetics tool to control actomyosin contractility activity in the Ciona larva epidermis. We first validated the light-dependent membrane localization and regulatory efficiency on mechanical forces of the MLCP-BcLOV4 system as well as the optimum light intensity that activated the system in HeLa cells. Then, we applied the optimized MLCP-BcLOV4 system in Ciona larval epidermal cells to realize the regulation of membrane elongation at the subcellular level. Moreover, we successfully applied this system on the process of apical contraction during atrial siphon invagination in Ciona larvae. Our results showed that the activity of phosphorylated myosin on the apical surface of atrial siphon primordium cells was suppressed and apical contractility was disrupted, resulting in the failure of the invagination process. Thus, we established an effective technique and system that provide a powerful approach in the study of the biomechanical mechanisms driving morphogenesis in marine organisms.
205.

Optogenetic closed-loop feedback control of the unfolded protein response optimizes protein production.

blue EL222 S. cerevisiae Transgene expression
Metab Eng, 11 Mar 2023 DOI: 10.1016/j.ymben.2023.03.001 Link to full text
Abstract: In biotechnological protein production processes, the onset of protein unfolding at high gene expression levels leads to diminishing production yields and reduced efficiency. Here we show that in silico closed-loop optogenetic feedback control of the unfolded protein response (UPR) in S. cerevisiae clamps gene expression rates at intermediate near-optimal values, leading to significantly improved product titers. Specifically, in a fully-automated custom-built 1L-photobioreactor, we used a cybergenetic control system to steer the level of UPR in yeast to a desired set-point by optogenetically modulating the expression of α-amylase, a hard-to-fold protein, based on real-time feedback measurements of the UPR, resulting in 60% higher product titers. This proof-of-concept study paves the way for advanced optimal biotechnology production strategies that diverge from and complement current strategies employing constitutive overexpression or genetically hardwired circuits.
206.

Interaction between PI3K and the VDAC2 channel tethers Ras-PI3K-positive endosomes to mitochondria and promotes endosome maturation.

blue CRY2/CRY2 A-431 Organelle manipulation Transgene expression
Cell Rep, 11 Mar 2023 DOI: 10.1016/j.celrep.2023.112229 Link to full text
Abstract: Intracellular organelles of mammalian cells communicate with one another during various cellular processes. The functions and molecular mechanisms of such interorganelle association remain largely unclear, however. We here identify voltage-dependent anion channel 2 (VDAC2), a mitochondrial outer membrane protein, as a binding partner of phosphoinositide 3-kinase (PI3K), a regulator of clathrin-independent endocytosis downstream of the small GTPase Ras. VDAC2 tethers endosomes positive for the Ras-PI3K complex to mitochondria in response to cell stimulation with epidermal growth factor and promotes clathrin-independent endocytosis, as well as endosome maturation at membrane association sites. With an optogenetics system to induce mitochondrion-endosome association, we find that, in addition to its structural role in such association, VDAC2 is functionally implicated in the promotion of endosome maturation. The mitochondrion-endosome association thus plays a role in the regulation of clathrin-independent endocytosis and endosome maturation.
207.

A Single-Component Optogenetic Gal4-UAS System Allows Stringent Control of Gene Expression in Zebrafish and Drosophila.

blue VVD D. melanogaster in vivo HEK293 Schneider 2 zebrafish in vivo Transgene expression
ACS Synth Biol, 9 Mar 2023 DOI: 10.1021/acssynbio.2c00410 Link to full text
Abstract: The light-regulated Gal4-UAS system has offered new ways to control cellular activities with precise spatial and temporal resolution in zebrafish and Drosophila. However, the existing optogenetic Gal4-UAS systems suffer from having multiple protein components and a dependence on extraneous light-sensitive cofactors, which increase the technical complexity and limit the portability of these systems. To overcome these limitations, we herein describe the development of a novel optogenetic Gal4-UAS system (ltLightOn) for both zebrafish and Drosophila based on a single light-switchable transactivator, termed GAVPOLT, which dimerizes and binds to gene promoters to activate transgene expression upon blue light illumination. The ltLightOn system is independent of exogenous cofactors and exhibits a more than 2400-fold ON/OFF gene expression ratio, allowing quantitative, spatial, and temporal control of gene expression. We further demonstrate the usefulness of the ltLightOn system in regulating zebrafish embryonic development by controlling the expression of lefty1 by light. We believe that this single-component optogenetic system will be immensely useful in understanding the gene function and behavioral circuits in zebrafish and Drosophila.
208.

Live Imaging with Genetically Encoded Physiologic Sensors and Optogenetic Tools.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
J Invest Dermatol, Mar 2023 DOI: 10.1016/j.jid.2022.12.002 Link to full text
Abstract: Barrier tissues such as the epidermis employ complex signal transduction systems to execute morphogenetic programs and to rapidly respond to environmental cues to promote homeostasis. Recent advances in live-imaging techniques and tools allow precise spatial and temporal monitoring and manipulation of intracellular signaling cascades. Leveraging the chemistry of naturally occurring light-sensitive proteins, genetically encoded fluorescent biosensors have emerged as robust tools for visualizing dynamic signaling events. In contrast, optogenetic protein constructs permit laser-mediated control of signal receptors and effectors within live cells, organoids, and even model organisms. In this paper, we review the basic principles underlying novel biosensors and optogenetic tools and highlight how recent studies in cutaneous biology have leveraged these imaging strategies to illuminate the spatiotemporal signals regulating epidermal development, barrier formation, and tissue homeostasis.
209.

Mechanosensitive mTORC2 independently coordinates leading and trailing edge polarity programs during neutrophil migration.

blue iLID HL-60 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Mol Biol Cell, 1 Mar 2023 DOI: 10.1091/mbc.e22-05-0191 Link to full text
Abstract: By acting both upstream of and downstream from biochemical organizers of the cytoskeleton, physical forces function as central integrators of cell shape and movement. Here we use a combination of genetic, pharmacological, and optogenetic perturbations to probe the role of the conserved mechanosensitive mTOR complex 2 (mTORC2) programs in neutrophil polarity and motility. We find that the tension-based inhibition of leading-edge signals (Rac, F-actin) that underlies protrusion competition is gated by the kinase-independent role of the complex, whereas the regulation of RhoA and myosin II-based contractility at the trailing edge depend on mTORC2 kinase activity. mTORC2 is essential for spatial and temporal coordination of the front and back polarity programs for persistent migration under confinement. This mechanosensory pathway integrates multiple upstream signals, and we find that membrane stretch synergizes with biochemical co-input phosphatidylinositol (3,4,5)-trisphosphate to robustly amplify mTORC2 activation. Our results suggest that different signaling arms of mTORC2 regulate spatially and molecularly divergent cytoskeletal programs for efficient coordination of neutrophil shape and movement.
210.

Light inducible protein degradation in E. coli with LOVtag.

blue AsLOV2 EL222 E. coli
bioRxiv, 26 Feb 2023 DOI: 10.1101/2023.02.25.530042 Link to full text
Abstract: Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVtag, a protein tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVtag by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVtag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVtag system. Finally, we use the LOVtag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVtag system, and introduce a powerful new tool for bacterial optogenetics.
211.

An engineered N-acyltransferase-LOV2 domain fusion protein enables light-inducible allosteric control of enzymatic activity.

blue AsLOV2 in vitro
J Biol Chem, 24 Feb 2023 DOI: 10.1016/j.jbc.2023.103069 Link to full text
Abstract: Transferases are ubiquitous across all known life. While much work has been done to understand and describe these essential enzymes, there have been minimal efforts to exert tight and reversible control over their activity for various biotechnological applications. Here, we apply a rational, computation-guided methodology to design and test a transferase-class enzyme allosterically regulated by Light-oxygen-voltage-sensing domain (LOV2). We utilize computational techniques to determine the intrinsic allosteric networks within N-acyltransferase (Orf11/*Dbv8) and identify potential allosteric sites on the protein's surface. We insert LOV2 at the predicted allosteric site, exerting reversible control over enzymatic activity. We demonstrate blue-light regulation of N-acyltransferase (Orf11/*Dbv8) function. Our study for the first time demonstrates optogenetic regulation of a transferase-class enzyme as a proof-of-concept for controllable transferase design. This successful design opens the door for many future applications in metabolic engineering and cellular programming.
212.

Calcium transients trigger switch-like discharge of prostaglandin E2 (PGE2) in an ERK-dependent manner.

blue CRY2clust MDCK Immediate control of second messengers
bioRxiv, 23 Feb 2023 DOI: 10.1101/2023.02.01.526734 Link to full text
Abstract: Prostaglandin E2 (PGE2) is a key player in a plethora of physiological and pathological events. Nevertheless, little is known about the dynamics of PGE2 secretion from a single cell and its effect on the neighboring cells. Here, by observing confluent Madin-Darby canine kidney (MDCK) epithelial cells expressing fluorescent biosensors we demonstrate that calcium transients in a single cell cause PGE2-mediated radial spread of PKA activation (RSPA) in neighboring cells. By in vivo imaging, RSPA was also observed in the basal layer of the mouse epidermis. Experiments with an optogenetic tool revealed a switch-like PGE2 discharge in response to the increasing cytoplasmic Ca2+ concentrations. The cell density of MDCK cells correlated with the frequencies of calcium transients and the following RSPA. The ERK MAP kinase activation also enhanced the frequency of RSPA in MDCK and in vivo. Thus, the PGE2 discharge is regulated temporally by calcium transients and ERK activity.
213.

An optogenetic toolkit for light-inducible antibiotic resistance.

blue VVD E. coli Transgene expression Nucleic acid editing
Nat Commun, 23 Feb 2023 DOI: 10.1038/s41467-023-36670-2 Link to full text
Abstract: Antibiotics are a key control mechanism for synthetic biology and microbiology. Resistance genes are used to select desired cells and regulate bacterial populations, however their use to-date has been largely static. Precise spatiotemporal control of antibiotic resistance could enable a wide variety of applications that require dynamic control of susceptibility and survival. Here, we use light-inducible Cre recombinase to activate expression of drug resistance genes in Escherichia coli. We demonstrate light-activated resistance to four antibiotics: carbenicillin, kanamycin, chloramphenicol, and tetracycline. Cells exposed to blue light survive in the presence of lethal antibiotic concentrations, while those kept in the dark do not. To optimize resistance induction, we vary promoter, ribosome binding site, and enzyme variant strength using chromosome and plasmid-based constructs. We then link inducible resistance to expression of a heterologous fatty acid enzyme to increase production of octanoic acid. These optogenetic resistance tools pave the way for spatiotemporal control of cell survival.
214.

Engineering of bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s.

blue green red Am1 c0023g2/BAm green Am1 c0023g2/BAm red AsLOV2 TULIP CHO-K1 HEK293T in vitro S. cerevisiae Transgene expression Multichromatic
Nat Methods, 23 Feb 2023 DOI: 10.1038/s41592-023-01764-8 Link to full text
Abstract: Optogenetic tools for controlling protein-protein interactions (PPIs) have been developed from a small number of photosensory modules that respond to a limited selection of wavelengths. Cyanobacteriochrome (CBCR) GAF domain variants respond to an unmatched array of colors; however, their natural molecular mechanisms of action cannot easily be exploited for optogenetic control of PPIs. Here we developed bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s by engineering synthetic light-dependent interactors for a red/green GAF domain. The systematic approach enables the future engineering of the broad chromatic palette of CBCRs for optogenetics use. BICYCLs are among the smallest optogenetic tools for controlling PPIs and enable either green-ON/red-OFF (BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 800-fold state selectivity. The access to green wavelengths creates new opportunities for multiplexing with existing tools. We demonstrate the utility of BICYCLs for controlling protein subcellular localization and transcriptional processes in mammalian cells and for multiplexing with existing blue-light tools.
215.

Optogenetic decoding of Akt2-regulated metabolic signaling pathways in skeletal muscle cells using transomics analysis.

blue CRY2/CIB1 C2C12 Signaling cascade control
Sci Signal, 21 Feb 2023 DOI: 10.1126/scisignal.abn0782 Link to full text
Abstract: Insulin regulates various cellular metabolic processes by activating specific isoforms of the Akt family of kinases. Here, we elucidated metabolic pathways that are regulated in an Akt2-dependent manner. We constructed a transomics network by quantifying phosphorylated Akt substrates, metabolites, and transcripts in C2C12 skeletal muscle cells with acute, optogenetically induced activation of Akt2. We found that Akt2-specific activation predominantly affected Akt substrate phosphorylation and metabolite regulation rather than transcript regulation. The transomics network revealed that Akt2 regulated the lower glycolysis pathway and nucleotide metabolism and cooperated with Akt2-independent signaling to promote the rate-limiting steps in these processes, such as the first step of glycolysis, glucose uptake, and the activation of the pyrimidine metabolic enzyme CAD. Together, our findings reveal the mechanism of Akt2-dependent metabolic pathway regulation, paving the way for Akt2-targeting therapeutics in diabetes and metabolic disorders.
216.

Opto-APC: Engineering of cells that display phytochrome B on their surface for optogenetic studies of cell-cell interactions.

red PhyB/PIF6 HEK293T Jurkat Raji Control of cell-cell / cell-material interactions Extracellular optogenetics
Front Mol Biosci, 20 Feb 2023 DOI: 10.3389/fmolb.2023.1143274 Link to full text
Abstract: The kinetics of a ligand-receptor interaction determine the responses of the receptor-expressing cell. One approach to experimentally and reversibly change this kinetics on demand is optogenetics. We have previously developed a system in which the interaction of a modified receptor with an engineered ligand can be controlled by light. In this system the ligand is a soluble Phytochrome B (PhyB) tetramer and the receptor is fused to a mutated PhyB-interacting factor (PIFS). However, often the natural ligand is not soluble, but expressed as a membrane protein on another cell. This allows ligand-receptor interactions in two dimensions. Here, we developed a strategy to generate cells that display PhyB as a membrane-bound protein by expressing the SpyCatcher fused to a transmembrane domain in HEK-293T cells and covalently coupling purified PhyB-SpyTag to these cells. As proof-of-principle, we use Jurkat T cells that express a GFP-PIFS-T cell receptor and show that these cells can be stimulated by the PhyB-coupled HEK-293T cells in a light dependent manner. Thus, we call the PhyB-coupled cells opto-antigen presenting cells (opto-APCs). Our work expands the toolbox of optogenetic technologies, allowing two-dimensional ligand-receptor interactions to be controlled by light.
217.

Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in Caenorhabditis elegans.

red PhyB/PIF3 C. elegans in vivo Immediate control of second messengers
ACS Synth Biol, 20 Feb 2023 DOI: 10.1021/acssynbio.2c00461 Link to full text
Abstract: Optogenetic techniques have been intensively applied to the nematode Caenorhabditis elegans to investigate its neural functions. However, as most of these optogenetics are responsive to blue light and the animal exhibits avoidance behavior to blue light, the application of optogenetic tools responsive to longer wavelength light has been eagerly anticipated. In this study, we report the implementation in C. elegans of a phytochrome-based optogenetic tool that responds to red/near-infrared light and manipulates cell signaling. We first introduced the SynPCB system, which enabled us to synthesize phycocyanobilin (PCB), a chromophore for phytochrome, and confirmed the biosynthesis of PCB in neurons, muscles, and intestinal cells. We further confirmed that the amount of PCBs synthesized by the SynPCB system was sufficient for photoswitching of phytochrome B (PhyB)-phytochrome interacting factor 3 (PIF3). In addition, optogenetic elevation of intracellular Ca2+ levels in intestinal cells induced a defecation motor program. These SynPCB system and phytochrome-based optogenetic techniques would be of great value in elucidating the molecular mechanisms underlying C. elegans behaviors.
218.

Crosstalk between Rac and Rho GTPase activity mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles.

blue AsLOV2 A-431 HeLa Neuro-2a NIH/3T3 U-2 OS Control of cytoskeleton / cell motility / cell shape
bioRxiv, 20 Feb 2023 DOI: 10.1101/2023.02.20.529203 Link to full text
Abstract: Rho GTPase crosstalk is thought to play a key role in the spatio-temporal coordination of cytoskeletal dynamics during cell migration. Here, we directly investigated crosstalk between the major Rho GTPases Rho, Rac and Cdc42 by combining acute activity perturbation with activity measurements in individual, mammalian cells. As expected for their proposed mutual inhibition, we confirmed that Rho inhibits Rac activity. However, surprisingly, we found that Rac strongly stimulates Rho activity. We hypothesized that this crosstalk might play a role in mediating the tight spatio-temporal coupling between cell protrusions and retractions that are typically observed during mesenchymal cell migration. Using new, improved activity sensors for endogenous Rho GTPases, we find that Rac activation is tightly and precisely coupled to local cell protrusions, followed by Rho activation during retraction. In a screen for potential crosstalk mediators, we find that a subset of the Rho activating Lbc-type GEFs, in particular Arhgef11 and Arhgef12, are enriched at transient cell protrusions and retractions. Furthermore, via an optogenetic approach, we show that these Lbc GEFs are recruited to the plasma membrane by active Rac, suggesting that they might link cell protrusion and retraction by mediating Rac/Rho activity crosstalk. Indeed, depletion of these GEFs impaired cell protrusion-retraction dynamics, which was accompanied by an increase in migration directionality and reduced migration velocity. Thus, our study shows that Arhgef11 and Arhgef12 facilitate effective exploratory cell migration by coordinating the central cell morphogenic processes of cell protrusion and retraction by coupling the activity of the associated small GTPases Rac and Rho.
219.

Spatiotemporally controllable diphtherin transgene system and neoantigen immunotherapy.

blue VVD B16-F10 mouse in vivo Transgene expression
J Control Release, 14 Feb 2023 DOI: 10.1016/j.jconrel.2022.08.059 Link to full text
Abstract: Individualized immunotherapy has attracted great attention due to its high specificity, effectiveness, and safety. We used an exogenous antigen to label tumor cells with MHC I molecules, which allowed neoantigen-specific T cells to recognize and kill tumor cells. A neoantigen vaccine alone cannot achieve complete tumor clearance due to a tumor immunosuppressive microenvironment. The LightOn system was developed to effectively eliminate tumor cells through the spatiotemporally controllable expression of diphtheria toxin A fragment, leading to antigen release in the tumor region. These antigens stimulated and enhanced immunological function and thus, recruited neoantigen-specific T cells to infiltrate tumor tissue. Using the nanoparticle delivery system, neoantigens produced higher delivery efficiency to lymph nodes and improved tumor targeting ability for tumor cell labelling. Good tumor inhibition and prolonged survival were achieved, while eliciting a strong immune response. The combination of a spatiotemporally controllable transgene system with tumor neoantigen labeling has great potential for tumor immunotherapy.
220.

Programming the lifestyles of engineered bacteria for cancer therapy.

red BphS P. aeruginosa Immediate control of second messengers
Natl Sci Rev, 14 Feb 2023 DOI: 10.1093/nsr/nwad031 Link to full text
Abstract: Bacteria can be genetically engineered to act as therapeutic delivery vehicles in the treatment of tumors, killing cancer cells or activating the immune system. This is known as bacteria-mediated cancer therapy (BMCT). Tumor invasion, colonization and tumor regression are major biological events, which are directly associated with antitumor effects and are uncontrollable due to the influence of tumor microenvironments during the BMCT process. Here, we developed a genetic circuit for dynamically programming bacterial lifestyles (planktonic, biofilm or lysis), to precisely manipulate the process of bacterial adhesion, colonization and drug release in the BMCT process, via hierarchical modulation of the lighting power density of near-infrared (NIR) light. The deep tissue penetration of NIR offers us a modality for spatio-temporal and non-invasive control of bacterial genetic circuits in vivo. By combining computational modeling with a high-throughput characterization device, we optimized the genetic circuits in engineered bacteria to program the process of bacterial lifestyle transitions by altering the illumination scheme of NIR. Our results showed that programming intratumoral bacterial lifestyle transitions allows precise control of multiple key steps throughout the BMCT process and therapeutic efficacy can be greatly improved by controlling the localization and dosage of therapeutic agents via optimizing the illumination scheme.
221.

Near-infrared-inducible Bcl-2-associated X protein system for apoptosis regulation in vivo.

blue CRY2/CIB1 HeLa mouse in vivo Cell death
J Chem Eng, 8 Feb 2023 DOI: 10.1016/j.cej.2023.141771 Link to full text
Abstract: Bcl-2-associated X protein (BAX) plays a vital role in maintaining tissue homeostasis and participates in the pathogenesis of various diseases. Poor spatiotemporal control remains a challenge in direct pharmacological modulation and genetic perturbation of BAX’s activity. Herein, we developed a near-infrared (NIR) light-inducible BAX (NiBAX) system that enabled remote and spatiotemporal control of BAX-mediated apoptosis. The NiBAX was constructed by integration of two independent modules: blue light-responsive optogenetics BAX plasmids for regulating migration of BAX to mitochondria and upconversion nanoparticles-encapsulated flexible implant for converting tissue-penetrative NIR light into blue light. This NiBAX could readily induce robust BAX-based cellular apoptosis in vitro, and elicit effective apoptosis-mediated oncotherapy in vivo under NIR light. Collectively, the upconversion optogenetic NiBAX system provides an advanced tool for BAX-related cellular behavior control.
222.

Polarized branched Actin modulates cortical mechanics to produce unequal-size daughters during asymmetric division.

blue CRY2/CIB1 TULIP D. melanogaster in vivo Cell cycle control Transgene expression
Nat Cell Biol, 6 Feb 2023 DOI: 10.1038/s41556-022-01058-9 Link to full text
Abstract: The control of cell shape during cytokinesis requires a precise regulation of mechanical properties of the cell cortex. Only few studies have addressed the mechanisms underlying the robust production of unequal-sized daughters during asymmetric cell division. Here we report that unequal daughter-cell sizes resulting from asymmetric sensory organ precursor divisions in Drosophila are controlled by the relative amount of cortical branched Actin between the two cell poles. We demonstrate this by mistargeting the machinery for branched Actin dynamics using nanobodies and optogenetics. We can thereby engineer the cell shape with temporal precision and thus the daughter-cell size at different stages of cytokinesis. Most strikingly, inverting cortical Actin asymmetry causes an inversion of daughter-cell sizes. Our findings uncover the physical mechanism by which the sensory organ precursor mother cell controls relative daughter-cell size: polarized cortical Actin modulates the cortical bending rigidity to set the cell surface curvature, stabilize the division and ultimately lead to unequal daughter-cell size.
223.

Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales.

blue EL222 S. cerevisiae Transgene expression
Front Bioeng Biotechnol, 6 Feb 2023 DOI: 10.3389/fbioe.2023.1085268 Link to full text
Abstract: Optogenetics arises as a valuable tool to precisely control genetic circuits in microbial cell factories. Light control holds the promise of optimizing bioproduction methods and maximizing yields, but its implementation at different steps of the strain development process and at different culture scales remains challenging. In this study, we aim to control beta-carotene bioproduction using optogenetics in Saccharomyces cerevisiae and investigate how its performance translates across culture scales. We built four lab-scale illumination devices, each handling different culture volumes, and each having specific illumination characteristics and cultivating conditions. We evaluated optogenetic activation and beta-carotene production across devices and optimized them both independently. Then, we combined optogenetic induction and beta-carotene production to make a light-inducible beta-carotene producer strain. This was achieved by placing the transcription of the bifunctional lycopene cyclase/phytoene synthase CrtYB under the control of the pC120 optogenetic promoter regulated by the EL222-VP16 light-activated transcription factor, while other carotenogenic enzymes (CrtI, CrtE, tHMG) were expressed constitutively. We show that illumination, culture volume and shaking impact differently optogenetic activation and beta-carotene production across devices. This enabled us to determine the best culture conditions to maximize light-induced beta-carotene production in each of the devices. Our study exemplifies the stakes of scaling up optogenetics in devices of different lab scales and sheds light on the interplays and potential conflicts between optogenetic control and metabolic pathway efficiency. As a general principle, we propose that it is important to first optimize both components of the system independently, before combining them into optogenetic producing strains to avoid extensive troubleshooting. We anticipate that our results can help designing both strains and devices that could eventually lead to larger scale systems in an effort to bring optogenetics to the industrial scale.
224.

Measurement of Secreted Embryonic Alkaline Phosphatase.

red BphS HEK293T
Bio Protoc, 5 Feb 2023 DOI: 10.21769/bioprotoc.4600 Link to full text
Abstract: Secreted reporters have been demonstrated to be simple and useful tools for analyzing transcriptional regulation in mammalian cells. The distinctive feature of these assays is the ability to detect reporter gene expression in the culture supernatant without affecting the cell physiology or leading to cell lysis, which allows repeated experimentation and sampling of the culture medium using the same cell cultures. Secreted embryonic alkaline phosphatase (SEAP) is one of the most widely used reporter, which can be easily detected using colorimetry following incubation with a substrate, such as p-nitrophenol phosphate. In this report, we present detailed procedures for detection and quantification of the SEAP reporter. We believe that this step-by-step protocol can be easily used by researchers to monitor and measure molecular genetic events in a variety of mammalian cells due to its simplicity and ease of handling. Graphical abstract Schematic overview of the workflow described in this protocol.
225.

LILAC: enhanced actin imaging with an optogenetic Lifeact.

blue AsLOV2 Schneider 2
Nat Methods, 30 Jan 2023 DOI: 10.1038/s41592-022-01761-3 Link to full text
Abstract: Lifeact is a popular peptide-based label of actin filaments in live cells. We have designed an improved Lifeact variant, LILAC, that binds to actin in light using the LOV2 protein. Light control allows the user to modulate actin labeling, enabling image analysis that leverages modulation for an enhanced view of F-actin dynamics in cells. Furthermore, the tool reduces actin perturbations and cell sickness caused by Lifeact overexpression.
Submit a new publication to our database